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An Initial Taxonomy

Most empirical studies can usefully be classified along two dimensions:

Modeling Approach

Descriptive Structural
D

a
ta

Experimental A B

Observational C D

These classifications are useful for thinking about the types of inferences
a study can draw.

Example: Does increasing shelf space for a product increase sales?



Data and Assumptions

The most general object that a researcher can (hope to) describe is the
joint density of the observable data.

The joint density characterizes the Data Generating Process (DGP).

Data x : {x1, . . . xN} y : {y1, . . . yN}
Joint Density f (X1, . . .XN ,Y1, . . . ,YN)

Unfortunately, we cannot recover f (·) without assumptions.

Point 1: ALL EMPIRICAL WORK INVOLVES ASSUMPTIONS!

Point 2: Most assumptions are maintained and not testable.

Point 3: Assumptions permit inference, but at the cost of credibility.



Data and Assumptions

The most general object that a researcher can (hope to) describe is the
joint density of the observable data.

The joint density characterizes the Data Generating Process (DGP).

Data x : {x1, . . . xN} y : {y1, . . . yN}
Joint Density f (X1, . . .XN ,Y1, . . . ,YN)

Unfortunately, we cannot recover f (·) without assumptions.

Point 1: ALL EMPIRICAL WORK INVOLVES ASSUMPTIONS!

Point 2: Most assumptions are maintained and not testable.

Point 3: Assumptions permit inference, but at the cost of credibility.



Data and Assumptions

The most general object that a researcher can (hope to) describe is the
joint density of the observable data.

The joint density characterizes the Data Generating Process (DGP).

Data x : {x1, . . . xN} y : {y1, . . . yN}
Joint Density f (X1, . . .XN ,Y1, . . . ,YN)

Unfortunately, we cannot recover f (·) without assumptions.

Point 1: ALL EMPIRICAL WORK INVOLVES ASSUMPTIONS!

Point 2: Most assumptions are maintained and not testable.

Point 3: Assumptions permit inference, but at the cost of credibility.



Data and Assumptions

The most general object that a researcher can (hope to) describe is the
joint density of the observable data.

The joint density characterizes the Data Generating Process (DGP).

Data x : {x1, . . . xN} y : {y1, . . . yN}
Joint Density f (X1, . . .XN ,Y1, . . . ,YN)

Unfortunately, we cannot recover f (·) without assumptions.

Point 1: ALL EMPIRICAL WORK INVOLVES ASSUMPTIONS!

Point 2: Most assumptions are maintained and not testable.

Point 3: Assumptions permit inference, but at the cost of credibility.



Assumptions in Descriptive Studies

In the shelf space example, let Y = Sales and X = Space. Suppose we
know the amount of space given to different brands each week in a store.

To describe these data, we would typically assume:

Independent f (X1, . . .XN ,Y1, . . . ,YN) = ΠN
i=1fi (Xi ,Yi ).

Identically Distributed ΠN
i=1fi (Xi ,Yi ) = ΠN

i=1f (Xi ,Yi ).

We can now use nonparametric or parametric methods to estimate
f (X ,Y ), or features of it:

f(Y|X) - the conditional density of Y given X .

E(Y|X) - the conditional mean of Y given X .

Qτ (Y|X) - the τ th conditional quantile of Y given X .

BLP(Y|X) - the conditional best linear predictor of Y given X .



Shelf Space Example

Suppose a regression indicates a positive relation between shelf space and
sales. What can we conclude?

Observational Data:

There is a positive association within a week.

Can’t: infer causality; infer behavior; do counterfactuals.

Won’t instruments save us?

Experimental Data:

There is a positive association within a week.

Causal story relies on more assumptions and/or a theory.

Can’t: infer behavior; do counterfactuals.

Best case is that researcher intervention acts like an instrumental

variable; it’s unclear what the regression estimate means.



Recap: Descriptive Empirical Work

Descriptive empirical work is primarily about statistical objects.

Useful because it can:

Document facts. e.g., How much space is devoted to a product?
Does it vary over time? Is the 2nd shelf better than the 3rd?
Facts are useful for empiricists and theorists to know.

e.g., Bronnenberg, Dube, and Gentzkow (2012), ”The Evolution
of Brand Preferences: Evidence from Consumer Migration,”
AER.

Identify associations.

Corroborate theory. Has a theory made useful predictions?

Prediction. What factors best predict behavior?

Causal Connections (?) Caution: Relies on experimental control
and a theory.



Recap: Descriptive Empirical Work

Further Remarks:

Descriptive studies have an important role to play in marketing
provided they are not over-interpreted.

Data description is a lost art; useful figures and tables key; statistical
methods should be flexible (as nonparametric as possible).

Many empiricists believe descriptive work is exclusively about
“testing” theories. Descriptive work fundamentally cannot ”test” a
theory – you need a formal model to do this. If descriptive work
produces facts that fit a theory, that does not prove the theory.
Similarly, ill-fitting facts do not disprove a theory.

Many structural modelers with interesting data spend too little time
describing the data. An all-to-common post-seminar comment:
“Wow, what a great dataset. Unfortunately, I didn’t learn much
about it from the paper!”
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A Special Status for Regressions?

The most common descriptive model is a linear regression.

Many researchers believe that because regressions can be expressed
mathematically, they have a special status that goes beyond data
description.

This special status is reflected in the following comments:

1. β is the “effect” of a one unit change in X on Y .

2. β represents the “partial derivative” of the conditional mean of Y .

3. β is the “reduced form” effect of X on Y .

These comments over-interpret or mis-interpret regression estimates.

What is accurate?

A regression always delivers consistent estimates of the best linear
predictor (BLP). The BLP is not E (Y |X ). Further, both BLP(Y |X ) and
E (Y |X ) are predictive and not causal relationships.



Illustration

Gallileo is famous for his Tower of Pisa dropped ball experiments in which
he dropped objects from the tower and recorded the times T it took for
the objects to drop distances D.

Suppose Gallileo had regressed observed drop distances d = (d1, ..., dN)
on times t = (t1, ..., tN):

d = α0 + β0t + ε.

How would you describe the meaning of the estimates of α0 and β0?

We know that under standard assumptions (i.e., E (ε) = E (T ε) = 0):

β0 =
Cov(D,T )

Var(T )
α0 = E (D)− β0E (T ).

Anything else?

What about a causal interpretation? (It is after all an experimentally
controlled setting!)
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Illustration

A law of physics states that (apart from wind resistance)

D =
g

2
T 2 and T =

√
2

g

√
D (1)

where g is a gravitational constant.

Suppose we have IID mean zero measurement errors in the experiment
and that Gallileo sampled the drop times from a uniform T ∼ U[T , T̄ ].

Some algebra reveals:

β∗ =
Cov(D,T )

V (T )
= g

[
T + T̄

2

]
(2)

and
α∗ = E (D)− βE (T ) = − g

12
(T 2 + T̄ 2 + 4 T T̄ ). (3)

These equations illustrate that the BLP coefficients are in general
sensitive to the underlying distribution of the data!



Illustration

Specifically, the formulae suggest that changes in the support of the
uniform drop times [T , T̄ ] change the BLP coefficients.

This is true even though the (nonlinear) conditional mean function
E (D|T ) = m(T ) remains unchanged!



Structural Models - Definition

In contrast to descriptive statistical models, there are ”structural”
models.

Definition: A structural model is an explicit model of
economic behavior that gives rise to the joint density of the
data f(X,Y), or properties of this joint density such as E(Y|X).

Caution: In marketing, ”structural equation modeling” is sometimes
used to describe factor models.

A structural model usually has two components:

Mathematical equations derived from an economic or
decision-theoretic model (e.g., utility model plus utility
maximization; profit function plus profit maximization).

A stochastic structure that maps the theoretical model to a joint
density of the data (because theory models rarely fit data perfectly).



Structural Models - Identification

In some structural models, there can be a difference between the joint
density of the data f (X ,Y ) and the density of interest p(X ,Y ).

Example: X and Y are censored; p(X,Y) is the uncensored density.

To identify a density (or some feature of it) of interest, we need to show
that there exists a mapping from the density of the observed data
f (X ,Y ) to p(X ,Y ).

A probability model (or its features) are identified if the mapping is
one-to-one.

A probability model (or its features) are partially identified if the mapping
places meaningful bounds on the object of interest.

Remember: Identification is a population, not a sample concept.



Identification and Assumptions

RECALL: To identify anything of interest, you need assumptions.

Corollary: The more interesting an economic object, the more
assumptions typically required to identify it.

Corollary: The credibility of an identification argument, and therefore
an inference, declines in the number of assumptions (Manski).

Example (albeit statistical):

Recall the bivariate regression model:

Y = α0 + β0X ∗ + ε. (4)

What population conditions identify α0 and β0?

E (ε) = E (X ∗ε) = 0
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Identification and Assumptions

Formally
Cov(X ∗,Y ) = Cov(X ∗, α0 + β0X ∗ + ε)

= β0Var(X ∗) + Cov(X ∗, ε)

and
E (Y ) = α0 + β0E (X ∗) + E (ε).

Under the maintained assumptions,

[
β0

α0

]
=

 Cov(X ∗,Y )

Var(X ∗)

E (Y )− β0 E (X ∗)

 . (5)

Suppose we now are forced to back off on the assumption that we observe
X ∗. Suppose instead we observe a noisy version of X ∗, X = X ∗ + η.

In this case, we cannot obtain α0 and β0 from the first and second
population moments. We lack identification!



Identification and Assumptions

But we can “purchase” identification with more assumptions. These
assumptions may, however, reduce the credibility of our
inferences/estimates.

Specifically, consider the classical measurement error assumptions:
E (η) = Cov(X ∗, η) = Cov(η, ε) = 0. Now

Cov(X ,Y ) = β0Var(X ∗)

and
E (Y ) = α0 + β0E (X ∗)

but we do not observe Var(X ∗). The coefficients still are not identified!



Identification and Assumptions

However, they are partially identified. In particular, for positive values of
β0 we have the bounds (Frisch (1934))

plim
N→∞

1

d̂
≥ β0 ≥ plim

N→∞
b̂

where d̂ is the slope coefficient from regressing X on Y .

Thus, more assumptions has gotten us partial identification.

Does this mean the cost of the assumptions was worth it?



Structural Models

Back to structural models ...

Recall that the structure in structural models is reflected in the joint
density of the observed data.

Two sources of structure:

1. Economic equations of the form g(X ,Y , ε) = 0.

2. Stochastic structure of the form fX ,ε(X , ε).

Example:

Demand qD
t = β10 + β11x1t + γ12pt + ε1t

Supply pt = β20 + β22x2t + γ22qS
t + ε2t

Equilibrium qD
t = qS

t



Structural Models

Why is this a structural model?

Answer: The supply function describes the behavior of firms and the
demand function describes the behavior of consumers. These are the
objects of economic interest.

Notice how the structural model induces a distribution on the
(conditional) distribution of observed prices and quantities - f(P,Q|X).

e.g., the conditional mean is the ”reduced form” y ′t = x ′tΠ + v ′t .

This structural model has content to the extent that we can uniquely
recover the behavioral parameters β and γ from the parameters of the
conditional distribution (the Π and Var(vt)). (This is what identification
is about.)
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Structural Models - Example

The reduced form parameters of this structural model permit us to make
causal (”behavioral”) statements about the impact of a change in xt on
yt .

CAUTION. Many researchers mistakenly label regressions of yt on
exogenous variables xt as a ”reduced form”

y ′t = x ′tΠ + v ′t .

They go on to interpret the Π coefficients as the causal effect of xt on yt .

DO NOT DO THIS !

A causal reduced form only exists when it has been derived from
stuctural model. Consider how a linear ”reduced form” would represent
the following demand and supply system:

Demand ln qD
t = β10 + β11x1t + γ12 exp(pt) + ε1t

Supply ln pt = β20 + β22x2t + γ22 exp(qS
t ) + ε2t

Equilibrium qD
t = qS

t



Structural Models - Example

The reduced form for this model is not available in closed form.

Thus what meaning can we attach to our using the regression

pt = π0 + π1x1t + π2x2t + v1t ?

Answer: This is not a reduced form. We are instead estimating a
descriptive model and getting the best linear predictor (BLP) of price
given xt .

Without being clear on the structural model, this BLP does not reveal
anything about demand and supply behavior. The BLP coefficients π do
have the following descriptive interpretation:

If we draw two observations on {p, x1, x2} from the population
(for which the demand and supply model is relevant), and these
two observations have the same x1 value and their x2 values
differ by one, then the best (in a mean squared error sense)
prediction for the difference in prices is π2.
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Advantages of Structural Models

Contain economic or behavioral parameters that are of marketing
interest (E.g., the price elasticity of demand, marginal utility of
income, or marginal cost).

Once estimated, a structural model can perform counterfactuals.
For example, Would a vertically integrating firm increase price or
change advertising?

Can test the ”fit” or predictive performance of two or more
competing theories. Here it should be noted that the test depends
on the maintained structure of the competing models. For example,
a test of collusive versus Bertrand pricing presumes a given
functional form for demand and costs.

Structural models (hopefully) make clear what assumptions are used
to produce a given set of behavioral parameter estimates.



Cautions on Structural Models

Structural models should refect the institutional realities of data.
(e.g., ”We estimate a model for small and large cars.”)

Theory rarely delivers complete structural models. Researchers must
add functional form assumptions, parameters and variables. For
example, consider the indirect utility function in discrete choice
models:

Vi (p, y) = β0i + β1ipi + β2iyi + β3i (Advertising, Attributes,...).

Structural modelers should take care to verify that (i) their
functional form assumptions do not ”deliver the result” (e.g., Logit
cross-elasticities); and (ii) their results are not sensitive to model
elements not tied to theory.

Structural models are usually based on highly stylized theories. This
is because it is difficult to generate flexible, yet estimable models
(e.g., dynamic game models).



Recap - Descriptive Empirical Work

Statistical models are about describing data. They have an important
role to play in marketing provided they are not over-interpreted.

At a general level, data description is about (flexibly) characterizing the
joint density of the data - f(Data) = f(X,Y) .

Descriptive methods in economics and marketing usually seek to
characterize conditional densities (or their properties - means, medians).

The most common conditional model is the linear regression. It always
delivers consistent estimates of the BLP. The BLP is not E (Y |X ).
Further, both BLP(Y |X ) and E (Y |X ) are predictive and not causal
relationships.



Recap - Structural Empirical Work

A structural model is an explicit model of economic behavior that
characterizes the joint density of data f(X, y), or properties of this joint
density in terms of the behavioral parameters.

Structural models facilitate: parameter estimation; counterfactuals;
comparisons of theories; and make clear assumptions needed to estimate
a quantity.

Theory rarely delivers complete structural models. Researchers must add
functional form assumptions, parameters, variables and errors.

Structural modelers should verify that their functional form assumptions
do not ”deliver the result” and that their results are not sensitive to
model elements not tied to theory.



Parting Wisdoms

Structural models are not about high-tech statistics or fancy techniques.
(If you believe this, you are not alone, but you have lost sight of what
good empirical work is about.)

Descriptive work is just as important as structural work. Indeed, any
sensible structural paper does a good job documenting the main features
of the data. Additionally, a good paper documents whether the structural
model has done a reasonable job explaining the ”facts”.

Structural modeling is difficult because it requires: (i) knowledge of
theory; (ii) knowledge of econometrics; (iii) knowledge of the real world;
and (iv) an ability to put all these pieces together. Make sure you work
on each of these skills.



Suggested Summer Beach Reading:

1. Marketing Science Nov-Dec issue, 2011; summary of workshop
papers.

2. P. Reiss and F. Wolak, ”Structural Econometric Modeling:
Rationales and Examples from Industrial Organization.” Handbook
of Econometrics, Vol 6a, 2007.

3. P. Reiss. ”Descriptive, Structural, and Experimental Empirical
Methods in Marketing Research”, Marketing Science, 2011, pp.
950-964.

4. P. Reiss. Economic Data and Economic Inference, Book in Progress.

Note. These slides soon available at:

http://www.stanford.edu/∼ preiss


